Chemical Analysis versus Bioassay

S16a 24pC 106/107

Ching Lo, James Li

24 May 2011

ICAS11-P0987/88

Environmental Applied Science & Management

24pC1-07

Chemical analysis versus bioassay for environmental analysis of hazardous organic compounds: when to use what?

Three categories of environmental pollutants as study models

- 1. Pesticides/herbicides glyphosate {a single chemical configuration}
- 2. Persistent organic pollutants dioxins and furans in food and soil {17 toxic congeners}
- 3. Microbial toxins microcystins in drinking water source {90+ variants}

I avale of complexity of analytes

Levels of complexity of analytes		
Analyte	Chemical Structure	M.W
Glyphosate	O H U	169.07

COOH

о соон

ADDA

Dioxins

Microcystins

{17}

{90+}

g/mole

Dioxins

218-460

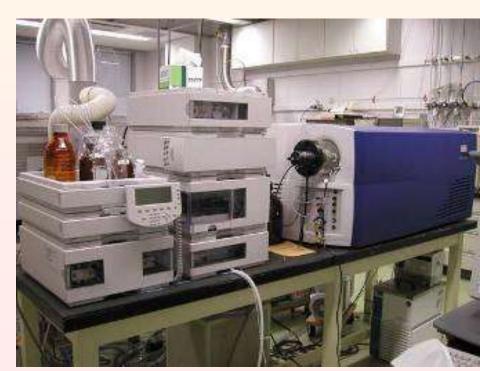
444

Furans 202-

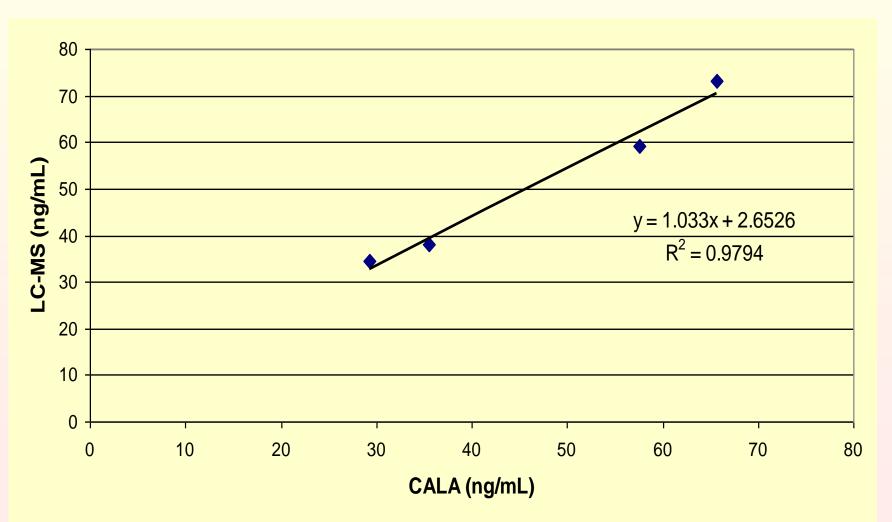
900-1100

Daltons

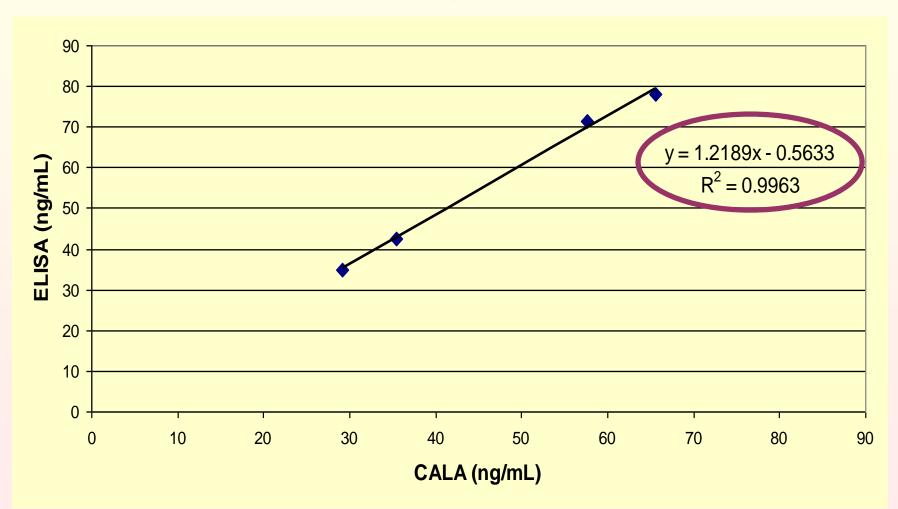
Glyphosate in Drinking Water



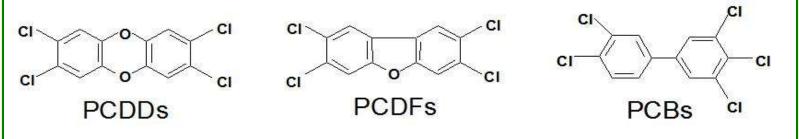
Glyphosate Determination – LC-MS Challenges


Complex method includes

• derivatization step: "


• LC-MS detection:

Proficiency QC Samples: LC-MS vs. CALA


Proficiency QC Samples: ELISA vs. CALA

Glyphosate Determination – ELISA Solutions

- ELISA can handle 35 samples per day; LC-MS is about 400 samples per year
- 95% (481/505) drinking water samples in 2007 using LC-MS were glyphosatenegative; elimination of 481 negative samples from LC-MS will save \$\$\$

Dioxins / Furans

- Likely carcinogens
- endocrine disruption
- autoimmune susceptibility
- wasting syndrome
- Chloracne
- reproductive system changes

GC-HRMS versus ELISA

\$2,000/sample; 209 samples in 8 months

Gas Chromatography – High Resolution Mass Spectrometry (GC-HRMS)

\$150/sample; 209 samples in 11 days

Enzyme-Linked Immunosorbent Assay (ELISA)

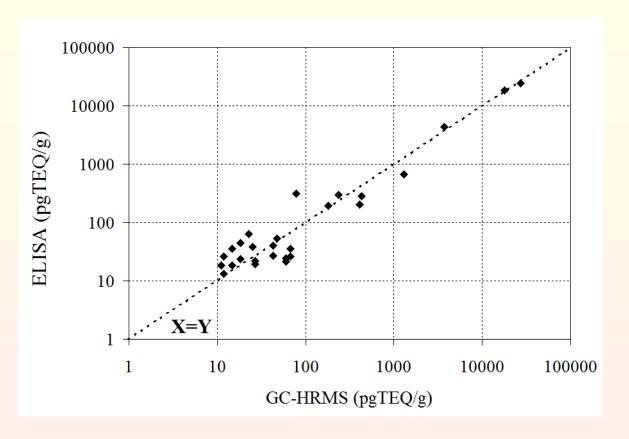
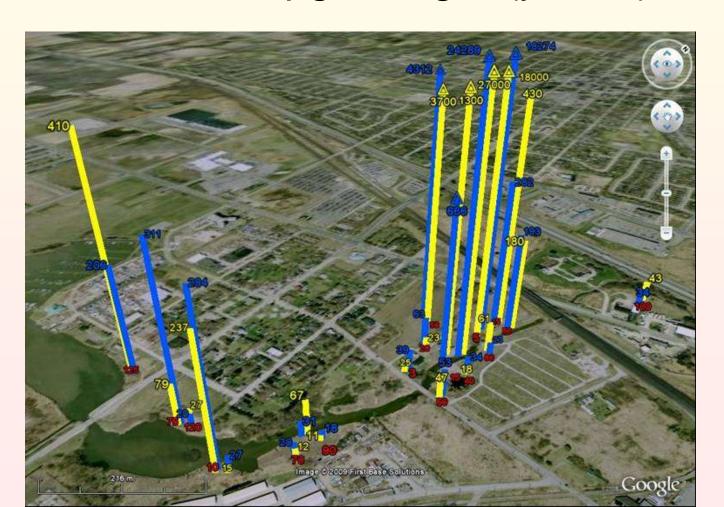
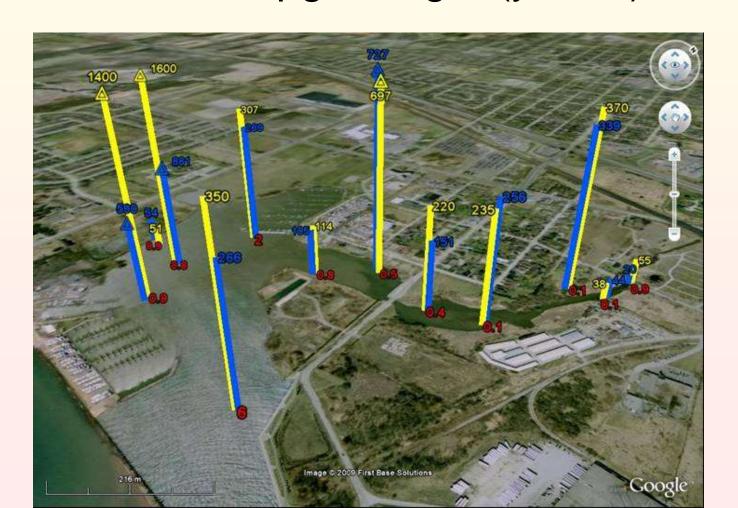

Cost savings by Dioxin ELISA

Table: Annual analytical capacity and cost

Parameter	GC-HRMS	ELISA
# of samples	311	697
Cost	\$590,900	\$209,100


➤ 2006: 50% of fish samples dioxin-negative

Correlation between ELISA & GC-HRMS



- 27 Soil samples between 11 and 27,000 pgTEQ g⁻¹.
- $r^2 = 0.995$, slope = 0.94

Upstream aerial map of the test site with an overlay of the soil depths in cm (red), ELISA results in pgTEQ g-1 (blue) and GC-HRMS results in pgTEQ g-1 (yellow)

Downstream aerial map of the test site with an overlay of the sediment depths in m (red), ELISA results in pgTEQ g-1 (blue) and GC-HRMS results in pgTEQ g-1 (yellow)

Cyanobacterial Toxins (Blue-Green Algae)

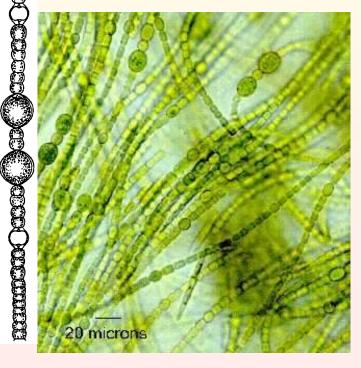
Cyanobacteria Bloom Sep 4, 2009: southern tip of Pelee Island, Ontario, Canada border USA; view from aircraft

October 09, 2008 EMMA REILLY THE HAMILTON SPECTATOR

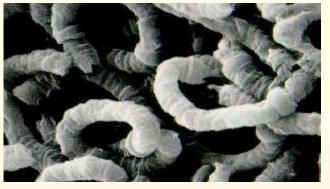
Lake Okeechobee, Florida

Blooms Like It Hot

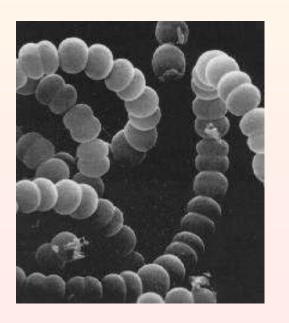
Science Vol. 320, 4 April 2008 pp. 57-58 Hans W. Paerl and Jef Huisman


CLIMATE CHANGE

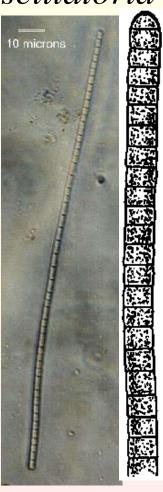
• "...Rising temperatures favour cyanobacteria in several ways. Cyanobacteria generally grow better at higher temperatures (often above 25°C) than do other phytoplankton species such as diatoms and green algae. This gives cyanobacteria a competitive advantage at elevated temperatures..."


Toxic cyanobacterial genus

Microcystis aeruginosa



Nostoc



Nodularia spumigena

Anabaena flos-aquae

Oscillatoria

Chemical Structures of Microcystin (over 90) Variants

•	· · · · · · · · ·	<i>y</i>	
Microcystin	(6) D-Glu (190)	(7) AmethyldehydroAla (Md	ha)
	СООН	CH _s	
(5) Adda	H ₈ C _{1,1,1}	NH (1) D-Ala	
OCH ₈		H₅C >=0	
ČH _a CH _a		, HN	
Ong Ong		COOH (2) L-X	
	(4) L-Z (3) D- <i>er</i>	ovthro-β-methylAsp (./si/i)	
Nodularin	(4) D-Glu (/sx/		
(3) Adda	u соон	(5) 2-(methylamino)-2(2)- dehydrobutyric acid (Mdl	nb)
och.	H ₈ C ₁₁₁	CH _a CH _a	
	NH CH	,° <u>Y</u>	
čH₅ ĊH₃	ot light	У ^{NH}	
	(2) L Z (1) D or	Čooн <i>vthro</i> -β-methylAsp (<i>iso</i>)	
	(2) L-Z (1) D- er	March-mariniwab (196)	

Cyanobacterial Toxin	L-X Position	L-Z Position
Microcystin-LR	Leu	Arg
Microcystin-RR	Arg	Arg
Microcystin-YR	Tyr	Arg
Microcystin-LA	Leu	Ala
Microcystin-LW	Leu	Trp
Microcystin-LF	Leu	Phe
Nodularin	-	Arg

"The toxic moiety" ADDA (3-amino-9-methoxy-2,6,8-trimethyl-10-phenyldeca-4,6-dienoic acid) is present in > 80% of known toxin variants

LC-(ESI)MS/MS vs. ELISA

\$500,000

\$7,000

Conclusion: ELISA Usage

Capability	Report	Example
Quantitative	μg/L (ppb)	Glyphosate
		pesticide
Semi-	Bioassay Equivalence	Dioxins
quantitative	(BEQ) vs. Toxicity	persistent
	Equivalency (TEQ);	organic
	(ppt)	pollutant
Qualitative	Presence/absence at	Microcystins
	threshold of drinking	bacterial
	water guideline (ppb)	toxin